138 research outputs found

    Development of a one-dimensional Wolter mirror for achromatic full-field X-ray microscopy

    Full text link
    We investigated a one-dimensional Wolter mirror (which consists of an elliptical mirror and a hyperbolic mirror) with the aim of developing an achromatic full-field X-ray microscope with a resolution of better than 50 nm. X-ray mirrors were ultraprecisely fabricated by elastic emission machining to give a figure accuracy of 2 nm (peak-to-valley). A one-dimensional Wolter mirror that had been precisely constructed was evaluated in terms of the point-spread function at the center of the field of view (FOV) and the FOV at an X-ray energy of 11.5 keV at BL29XUL of SPring-8. It was found to have a minimum resolution of 43 nm and a FOV equivalent to 12.1 μm. These results are highly consistent with calculation results. © 2011 SPIE.S. Matsuyama, N. Kidani, H. Mimura, J. Kim, Y. Sano, K. Tamasaku, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi "Development of a one-dimensional Wolter mirror for achromatic full-field x-ray microscopy", Proc. SPIE 8139, Advances in X-Ray/EUV Optics and Components VI, 813905 (28 September 2011); https://doi.org/10.1117/12.892987.SPIE Optical Engineering + Applications, 2011, San Diego, California, United State

    Development of a one-dimensional Wolter mirror for an advanced Kirkpatrick-Baez mirror

    Full text link
    To realize achromatic full-field hard X-ray microscopy with a resolution better than 100 nm, we studied an imaging system consisting of an elliptical mirror and a hyperbolic mirror. The figure accuracies of the elliptical and hyperbolic mirrors required to obtain diffraction-limited resolution were investigated using a wave-optical simulator, and then elliptical and hyperbolic mirrors were precisely fabricated, following the criterion of the figure accuracies. Experiments to form a demagnified image of a one-dimensional slit installed 45 m upstream were conducted using the imaging system at an X-ray energy of 11.5 keV at BL29XUL of SPring-8. The system could form a demagnified image with the best resolution of 78 nm. In addition, the field of view to obtain a resolution better than 200 nm was 4.2 micron. © 2010 SPIE.S. Matsuyama, T. Wakioka, H. Mimura, T. Kimura, N. Kidani, Y. Sano, Y. Nishino, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi "Development of a one-dimensional Wolter mirror for an advanced Kirkpatrick-Baez mirror", Proc. SPIE 7802, Advances in X-Ray/EUV Optics and Components V, 780202 (27 August 2010); https://doi.org/10.1117/12.860405.SPIE Optical Engineering + Applications, 2010, San Diego, California, United State

    Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation

    Get PDF
    The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Deletion of a gene encoding a putative deacetylase, Agd3, leads to defects in GAG deacetylation, biofilm formation, and virulence. Here, we show that Agd3 deacetylates GAG in a metal-dependent manner, and is the founding member of carbohydrate esterase family CE18. The active site is formed by four catalytic motifs that are essential for activity. The structure of Agd3 includes an elongated substrate-binding cleft formed by a carbohydrate binding module (CBM) that is the founding member of CBM family 87. Agd3 homologues are encoded in previously unidentified putative bacterial exopolysaccharide biosynthetic operons and in other fungal genomes. The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Here, the authors study an A. fumigatus enzyme that deacetylates GAG in a metal-dependent manner and constitutes a founding member of a new carbohydrate esterase family.Bio-organic Synthesi

    D-brane potentials in the warped resolved conifold and natural inflation

    Get PDF
    In this paper we obtain a model of Natural Inflation from string theory with a Planckian decay constant. We investigate D-brane dynamics in the background of the warped resolved conifold (WRC) throat approximation of Type IIB string compactifications on Calabi-Yau manifolds. When we glue the throat to a compact bulk Calabi-Yau, we generate a D-brane potential which is a solution to the Laplace equation on the resolved conifold. We can exactly solve this equation, including dependence on the angular coordinates. The solutions are valid down to the tip of the resolved conifold, which is not the case for the more commonly used deformed conifold. This allows us to exploit the effect of the warping, which is strongest at the tip. We inflate near the tip using an angular coordinate of a D5-brane in the WRC which has a discrete shift symmetry, and feels a cosine potential, giving us a model of Natural Inflation, from which it is possible to get a Planckian decay constant whilst maintaining control over the backreaction. This is because the decay constant for a wrapped brane contains powers of the warp factor, and so can be made large, while the wrapping parameter can be kept small enough so that backreaction is under control.Comment: 41 pages, 3 appendices, 1 figure, PDFLaTex; various clarifications added along with a new appendix on b-axions and wrapped D5 branes;version matches the one published in JHE

    Effect of troglitazone on tumor growth and pulmonary metastasis development of the mouse osteosarcoma cell line LM8

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteosarcoma often develops micrometastases in the lung prior to diagnosis, causing a fatal outcome. Therefore, the prevention of pulmonary metastases is critical for the improvement of the prognosis of patients with osteosarcoma. The purpose of this study was to investigate whether troglitazone (TGZ) is considered as possible therapeutics in the treatment of growth and metastasis of osteosarcoma.</p> <p>Methods</p> <p>LM8 cells were treated for 3 days with various concentrations of TGZ. The effect of TGZ on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine incorporation study. The assay of cell invasion and motility was performed using either the Matrigel-coated cell culture inserts or the uncoated cell culture inserts in the invasion chambers. The effect of TGZ on Akt signaling was assessed by Western blot analysis of Akt and p-Akt. The effects of oral administration of either TGZ (TGZ group) or ethanol (control group) on the growth of primary tumor and the development of pulmonary metastasis were examined in nude mice implanted with LM8 cells on their backs. The expression and activity of matrix metalloproteinase 2 (MMP-2) within the tumor were determined by immunohistochemistry and zymography. The microvessel density (MVD) within the tumor was determined by immunohistochemistry for CD34.</p> <p>Results</p> <p>TGZ dose-dependently inhibits cell proliferation. TGZ-treated cells were less invasive and less motile than untreated cells. The activity of MMP-2 secreted by TGZ-treated cells was lower than that secreted by untreated cells. TGZ decreased the level of p-Akt. The primary tumor mass was smaller in the TGZ group than in the control group. The TGZ group had less metastatic tumors in the lung compared with the control group. The expression and activity of MMP-2 within the tumor of the TGZ group were lower than those of the control group. The MVD within the tumor of the TGZ group was lower than that of the control group.</p> <p>Conclusions</p> <p>Inhibition of Akt signaling by TGZ may decrease the secretion of MMP-2, resulting in the decrease of invasiveness and motility in LM8 cells. Treatment of tumor-bearing mice with TGZ decreases the expression and activity of MMP-2 within the tumor, and inhibits primary tumor growth and pulmonary metastasis development. TGZ may offer a new approach in chemotherapy for osteosarcoma.</p

    Circadian Disruption Accelerates Tumor Growth and Angio/Stromagenesis through a Wnt Signaling Pathway

    Get PDF
    Epidemiologic studies show a high incidence of cancer in shift workers, suggesting a possible relationship between circadian rhythms and tumorigenesis. However, the precise molecular mechanism played by circadian rhythms in tumor progression is not known. To identify the possible mechanisms underlying tumor progression related to circadian rhythms, we set up nude mouse xenograft models. HeLa cells were injected in nude mice and nude mice were moved to two different cases, one case is exposed to a 24-hour light cycle (L/L), the other is a more “normal” 12-hour light/dark cycle (L/D). We found a significant increase in tumor volume in the L/L group compared with the L/D group. In addition, tumor microvessels and stroma were strongly increased in L/L mice. Although there was a hypervascularization in L/L tumors, there was no associated increase in the production of vascular endothelial cell growth factor (VEGF). DNA microarray analysis showed enhanced expression of WNT10A, and our subsequent study revealed that WNT10A stimulates the growth of both microvascular endothelial cells and fibroblasts in tumors from light-stressed mice, along with marked increases in angio/stromagenesis. Only the tumor stroma stained positive for WNT10A and WNT10A is also highly expressed in keloid dermal fibroblasts but not in normal dermal fibroblasts indicated that WNT10A may be a novel angio/stromagenic growth factor. These findings suggest that circadian disruption induces the progression of malignant tumors via a Wnt signaling pathway

    Bisphenol A-Mediated Suppression of LPL Gene Expression Inhibits Triglyceride Accumulation during Adipogenic Differentiation of Human Adult Stem Cells

    Get PDF
    The endocrine disrupting chemical, bisphenol A (BPA), has been shown to accelerate the rate of adipogenesis and increase the amount of triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. The objective of this study was to investigate if that observation is mirrored in human primary cells. Here we investigated the effect of BPA on adipogenesis in cultured human primary adult stem cells. Continuous exposure to BPA throughout the 14 days of differentiation dramatically reduced triglyceride accumulation and suppressed gene transcription of the lipogenic enzyme, lipoprotein lipase (LPL). Results presented in the present study show for the first time that BPA can reduce triglyceride accumulation during adipogenesis by attenuating the expression of LPL gene transcription. Also, by employing image cytometric analysis rather than conventional Oil red O staining techniques we show that BPA regulates triglyceride accumulation in a manner which does not appear to effect adipogenesis per se

    The cytotoxic T cell proteome and its shaping by the kinase mTOR

    Get PDF
    High-resolution mass spectrometry maps the cytotoxic T lymphocyte (CTL) proteome and the impact of mammalian target of rapamycin complex 1 (mTORC1) on CTLs. The CTL proteome was dominated by metabolic regulators and granzymes and mTORC1 selectively repressed and promoted expression of subset of CTL proteins (~10%). These included key CTL effector molecules, signaling proteins and a subset of metabolic enzymes. Proteomic data highlighted the potential for mTORC1 negative control of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) production in CTL. mTORC1 was shown to repress PtdIns(3,4,5)P(3) production and to determine the mTORC2 requirement for activation of the kinase Akt. Unbiased proteomic analysis thus provides a comprehensive understanding of CTL identity and mTORC1 control of CTL function

    Identification of genes associated with platinum drug sensitivity and resistance in human ovarian cancer cells

    Get PDF
    Platinum-based chemotherapeutic regimens are ultimately unsuccessful due to intrinsic or acquired drug resistance. Understanding the molecular basis for platinum drug sensitivity/resistance is necessary for the development of new drugs and therapeutic regimens. In an effort to identify such determinants, we evaluated the expression of approximately 4000 genes using cDNA microarray screening in a panel of 14 unrelated human ovarian cancer cell lines derived from patients who were either untreated or treated with platinum-based chemotherapy. These data were analysed relative to the sensitivities of the cells to four platinum drugs (cis-diamminedichloroplatinum (cisplatin), carboplatin, DACH-(oxalato)platinum (II) (oxaliplatin) and cis-diamminedichloro (2-methylpyridine) platinum (II) (AMD473)) as well as the proliferation rate of the cells. Correlation analysis of the microarray data with respect to drug sensitivity and resistance revealed a significant association of Stat1 expression with decreased sensitivity to cisplatin (r=0.65) and AMD473 (r=0.76). These results were confirmed by quantitative RT–PCR and Western blot analyses. To study the functional significance of these findings, the full-length Stat1 cDNA was transfected into drug-sensitive A2780 human ovarian cancer cells. The resulting clones that exhibited increased Stat1 expression were three- to five-fold resistant to cisplatin and AMD473 as compared to the parental cells. The effect of inhibiting Jak/Stat signalling on platinum drug sensitivity was investigated using the Janus kinase inhibitor, AG490. Pretreatment of platinum-resistant cells with AG490 resulted in significant increased sensitivity to AMD473, but not to cisplatin or oxaliplatin. Overall, the results indicate that cDNA microarray analysis may be used successfully to identify determinants of drug sensitivity/resistance and future functional studies of other candidate genes from this database may lead to an increased understanding of the drug resistance phenotype

    The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs

    Get PDF
    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal–organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.National Cancer Institute (U.S.) (CA034992
    corecore